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Schrodinger equation: 111. Spatially symmetric S states of 
two identical particles in the field of a massive third 
particle 

C L Davis and E N Maslen 
Department of Physics, University of Western Australia, Nedlands, Western Australia 6009 

Received 7 December 1982, in final form 10 June 1983 

Abstract. A procedure for solving the few-particle Schrodinger equation exactly is applied 
to a model system consisting of two identical particles and a massive third particle. The 
type of interaction potential is not specified except that it should not diverge more rapidly 
than rF2 at the particle positions. Allowable interactions include the Coulomb and the 
harmonic oscillator potentials. The principles are illustrated by reference to the spatially 
symmetric states of the system. 

The solution has the form of a multipole expansion in spherical polar coordinates. The 
radial dependence for each multipole component is defined by a power series including 
logarithmic terms. Explicit expressions are given for the coefficients in the expansion. 
Provided the equations are solved in an appropriate order, each coefficient is expressed 
directly in terms of the energy and of parameters associated with the normalisability of 
the function. The explicit expressions, obtained initially from recurrence relations and 
from the continuity of the derivative of the wavefunction, are simplified dramatically by 
the use of appropriate identities. Further simplification is possible for potentials of suitable 
form. Exact coefficients are obtained for low-order terms in the wavefunction of a 
two-electron atom. 

1. Introduction 

The quantum mechanical behaviour of a system of particles interacting via central 
forces is of fundamental importance. The few-particle Schrodinger equation describes 
this behaviour for systems where relativistic effects are negligible. There is a vast 
literature associated with the approximate solution of that equation, one of many 
reviews being by Hurley (1976). Exact solutions have been found for two-particle 
systems (such as the hydrogen atom) and for special three-particle systems where the 
forms of the potentials allow the Schrodinger equation to be separated (see e.g. Kestner 
and Sinanoglu 1962). Many interesting systems, including those with Coulomb forces, 
have a non-separable Schrodinger equation. This paper deals with a method of solution 
applicable to non-separable equations. 

The archetypal system contains three particles. If two of these are chosen to be 
identical we may study the special properties arising from that choice. It is convenient 
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4238 C L Davis and E N Maslen 

to choose the third particle to be massive compared with the identical particles. This 
restriction removes one term of modest complexity from the Hamiltonian, but is not 
essential to the solution procedure. The restricted form translates directly to the case 
of a two-electron atom, which is of special interest. 

Eigenfunctions of two-electron atoms are not analytic in the interparticle separ- 
ations (Morgan 1978a, b). Power series of these variables cannot be solutions of the 
Schrodinger equation. Thus, as pointed out by Morgan (1978a), the variationally 
determined coefficients in power series wavefunctions of the type employed by 
Kinoshita (1957) and Pekeris (1958) do not converge to well defined limits as the 
series are lengthened to improve the estimates of the energy. By contrast, coefficients 
in an analytical expansion would converge in a predictable way. Furthermore, it is 
possible to determine at least some of the coefficients in an analytical expansion exactly. 

Papers by Bartlett (1937), Fock (1954), Newman (1973) and Knirk (1974a, b, c, 
d)  have revealed that two-electron eigenfunctions can be expressed as series with terms 
involving logarithms of the interparticle distances. The approaches of Newman and 
Knirk are particularly interesting in that the coefficients in the expansion are numbers 
related by algebraic recurrence relations. In principle, algebraic expressions for the 
coefficients could be obtained from the recurrence relations. Tedious but essentially 
straightforward manipulations are involved. Additional conditions, such as the require- 
ment that the wavefunctions should be normalisable (square-integrable), must be 
applied to determine the coefficients uniquely. 

Davis and Maslen (1982, hereafter called paper 11) have described a pertuibation 
treatment of the ground state of helium. They used recurrence relations derived from 
the perturbation equations to generate numerical values for the coefficients in the 
wavefunction expansions, and developed a numerical method for estimating the para- 
meters associated with normalisability. We now extend this approach to solve the 
Schrodinger equation itself, with particular emphasis on obtaining and simplifying 
algebraic expressions for the coefficients. Exact expressions for the coefficients will 
permit the normalisability problem to be solved by a potentially exact method described 
in the following paper (Davis and Maslen 1983, hereafter referred to as IV). 

The methods developed here apply to the spatially symmetric S states of any 
three-particle system with two identical particles and a massive third particle, provided 
the interparticle potentials are not too singular. When the identical particles are 
electrons, the relevant states are those with 'S symmetry. Special properties of the 
Coulomb potential are described later, where the 'S states of two-electron atoms are 
discussed. 

2. The form of the wavefunction 

Hyperspherical coordinates (Knirk 1974a) are frequently used in studies of the three- 
particle problem. Here we prefer spherical polar coordinates for which the radial 
components of the wavefunction have the important property of asymptotic separability 
(see IV). Following a centre-of-mass transformation with m3 >> m, = m2, we take the 
limit m3 + CO. The 'S states may then be described in terms of three coordinates r l ,  
r2 and 0 shown in figure 1. With further rescaling of lengths and energies, the 
Hamiltonian operator in the Schrodinger equation 

( H -  E)* = 0 
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Figure 1. Coordinates for describing the spatially symmetric S states of the identical 
particles 1 and 2 in the field of a massive particle 3. 

may be written as 

leading to the equation 

where 0 =cos 0. 
The wavefunction is to be written as a multipole expansion with logarithmic 

contributions to the radial functions. The logarithmically varying functions may be 
written in a variety of equivalent forms (see 11). Here we write the trial solution as 

where Pf(0) is a Legendre polynomial. Logarithmic singularities are avoided by 
restricting the region of definition of the radial functions. The expression for the rl < r2 
region is obtained by interchanging r ,  and r2 in equation (2) .  The resulting spatial 
wavefunction is symmetric with respect to the interchanging of identical particles. 
Multiplying by an antisymmetric singlet spin function guarantees the overall antisym- 
metry of the wavefunction, when the identical particles are electrons. 

The exponential factors exp(-A,r,) and exp(-A,r,) are not essential features of 
the formal solution. Their inclusion has certain computational advantages discussed 
in IV. Their effect can in any case be simulated by changes in the coefficients C,,,. 

The trial solution (2) can be expressed in a variety of alternative forms. The one 
chosen provides a convenient structure for the coefficients associated with the nor- 
malisability of the wavefunction. Although no systematic attempt has been made to 
minimise the number of terms in the expansion, or to optimise the rate of convergence 
of the coefficients, the series truncates in important asymptotic cases. In the perturba- 
tion treatment of the helium atom, the convergence of the radial functions is rapid. 
These properties are described in 11. 

Convergence of the expansion of Legendre polynomials is rather slow. On the 
other hand, the results given in IV indicate that this expansion quickly approaches a 
simple asymptotic form. Assuming that the analytical expression for the asymptotic 
form can be identified, the remaining I dependence could be expressed as a multiplying 
series converging rapidly in 1. 
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3. Recurrence relations 

Substituting the trial solution (2)  into the Schrodinger equation (1) yields recurrence 
relations 

where 

{ I ,  m }  = + [ I (  I +  1) - m( m + I)]. 

In these relations the potential V from the Schrodinger equation is represented by an  
operator V<,p which, typically, multiplies the coefficient C,,, and varies its indices (see 
equation ( 2 5 ) ,  for example). The use of a different form of logarithmic factor in 
equation ( 2 )  changes the form of the right-hand side, but does not alter the left-hand 
side of equation (3). The  analysis which follows does not depend on the particular 
form chosen for the logarithmic terms. 

4. Explicit expressions 

The recurrence relation (3)  does not define the energy E and the coefficients Cl,,, 
uniquely. Additional constraints are imposed by the requirement that an  eigenfunction 
must belong to  the domain of the Hermitian operator H. These requirements (11) 
confine non-zero coefficients to the region 

j 3 0  and k = i + j >  -1 (4)  

and also lead to the condition 

which ensures continuity of the derivative of the wavefunction at  rl = r2.  
Formal solution of these equations follows the procedure described by Davis and 

Maslen (11) in their analysis of the perturbation equations for the ground state of 
helium. The  domain of non-zero coefficients, restricted by hermiticity as in equation 
(4),  is further restricted by the form of the recurrence relation to the region with j >  1. 

Provided the potential V is not more singular than r;* or  rY2 at the nucleus, the 
right-hand side of the recurrence relation (3 )  involves coefficients Cl,,, with lower 
k = i + j or  higher p than coefficients on the left-hand side. The  simultaneous recurrence 
and derivative continuity equations may then be solved in order of increasing k and 
decreasing p.  Solution of the simultaneous equations yields the set of expressions 
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with 

(-21+ k-4m-2g)(k+ 1 -g, k +  1 -g-2m)!! 

(g  + 2m, g)  ! ! (21 + 1 + g + 2m, 2 1 + 1 + g)! ! (7) 
x (21 - k-2+g+2m,  21- k -2+g)!!  

X 

The notation ( a ,  b) !  ! for a product string is defined in the appendix. R ( i  + j + 2, I, j + 2 - 
1, p) and D( k,  1, p )  are a shorthand notation for the expressions on the right-hand side 
of equations (3) and ( 5 )  respectively. The related terms in equations (6) and (6a)  are 
obtained by appropriate adjustment of the indices. 

Solved in the correct order, equations ( 6 )  give the value of an unknown coefficient 
(on the left) in terms of known coefficients and some undetermined parameters 
associated with normalisability of the wavefunction (on the right). Within each k,  p 
plane the order for 1 is irrelevant. For each k,  1, p line the order is that of increasing 
j ,  following the arrangement of the above equations. Numerical calculations following 
this procedure are described in IV. 

5. The reduced expressions 

5.1. The reduction procedure 

The nature of the solution is clarified if the explicit expressions are simplified. We 
first consider the functions X ( k ,  1, g)  defined in (7). These are independent of the 
potential terms. Combining neighbouring terms in (7) leads to 

X ( k ,  I, g )  = -(21+g+ 1)-(21- k-2) C (-1)"(2m+g- k - 3 ,  g -  k - 3 ) ! !  
X 

m = l  

X (21 - k -4+g+ 2m, 21- k - 2 +  g)!!(g, g+ 2m)!! 

X (21+g+ 1 ,21+g-  1 +2m)!!. (8)  

Simplification now proceeds in two stages. The first is to expand products in the 
denominator by partial fractions (see appendix), obtaining a finite sum resembling a 
binomial expansion and involving the functions 

92n+l = I lr - I  

(-1)"-"(2m + I)- '  =( - I )"  ~ / 4 +  Y (-1)"(2m + I)-' 
m = n  [ m = n  

m = n  L m = n  J 
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The summation 9'p4mip is interpreted as 
zero when p = q. Next, identities based on the equation 

for p < q ,  as for p > q  and as 

(;) = ( s ; l ) + ( ; : ; )  

are used to reduce the order of the binomial expansion coefficients. This shortens the 
finite sum, in some cases to a single term. 

The procedure that applies when k is odd differs in detail from that used when k 
is even. In both cases equation (8)  is rearranged in the form 

where b = ;( g - k ) .  

5.2. Reduction for odd k 

For odd k 

CY( k ,  1, g) = (21 - k - 2)(g ,  g - k - 3)!!(21 + g + 1,21- k - 2 + g)!! 

and 

S ( k ,  1, b )  = C (-1)"-b(2n - 1,2n+ k + 2 ) ! ! ( 2 n  +21-2,2n+21+ k +  l ) ! !  
m 

n=b 

which may be expanded by the partial fractions method to give 

( k + 1 ) / 2  

p = o  
S ( k ,  I ,  b ) = [ ( k + l ) ! ! ] - '  C (-1.)' 

We now apply the identities 

" )  (21 - 3 - 2j, 21 + k - 2 j ) ! !  = (21 + k)- '  { [ 2( +(]k--;)) 

I x (21 - 1 - 2j, 21 + k - 2 j ) ! !  

I X ( 2  I - 5 - 2j ,  2 1 + k - 6 - 2 j ) ! !  
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and 

S (  k,  1, j )  + S (  k ,  1, j +  1) = ( 2 j -  1 , 2 j +  k + 2 ) ! ! ( 2 j  + 21 - 2,2 j+ 21 + k + l ) ! !  

=[(k+l)!!]-' ( k + l ) / 2  ( - l )p (  i ( k + l )  ) (21-3-2p ,21+k-2p)! !  
p = o  

x [( 2j + 2p + 1 ) - l -  (2 j+ 21 + k - 2p + 1 ) - * I  
in order, obtaining 

S ( k ,  1, b ) = ( k +  1)-'(21+ k)- '  ( 2 b -  1 ,2b+ k ) ! ! ( 2 b + 2 1 - 2 , 2 b + 2 1 + k - l ) ! !  ( 
2(2b+ 1,2b + k ) ! ! ( 2 b  + 21- 2 , 2 b  + 21 + k - 3 ) ! !  -4S(  k -4,1, b + 1) 

( k  - 1)( 21 - k - 2)  
+ 

(11) 

Equation (1 1 )  constitutes a ladder operation for lowering k by 4 and increasing b 
by 1. Repeated use of this operation enables S ( k ,  1, b )  to be related t,o S(-1, 1, b+ 
f (  k + 1)) when 4( k + 1 )  is even and to S (  1, 1, b +a( k - 1 ) )  when b( k + 1) is odd. These 
special cases can be obtained directly from equation ( l o ) ,  leading to: 

for k odd and ;( k + 1 )  even 

s( k,  1, b )  = ( -4) 'k+1)/4[(  k + I)! !]-'(21- k - 6 ,  21 k ) ! !  ! !( 9 2 b + ( k + 3 j / 2  - 9 2 6 + 2 1 + ( k + 1 ) / 2 )  

( k - 3 ) / 4  

+ C 
j = O  

(-4)'( k - 1 -4j, k +  1)!!(21-  k - 6 ,  21 + k ) ! ! ! !  

X(21+k--4-4j ,  2 1 - k - 6 + 4 j ) ! ! ! !  

x ( 2 b  + 2j-  I ,  2b - 2j+ k ) ! ! ( 2 b  + 2j+ 21-2,2b-2j+ 21+ k -  l)!! 
( k - 3 ) / 4  

+ 2 (-4)'( k - 3 - 4j, k + I)!!( 21 - k - 6,21+ k ) ! ! ! !  
j = O  

X (21 + k - 4 - 4j, 21 - k - 2 + 4 j ) ! ! ! !  

x (2b  + 2j+ 1,2b - 2j+ k ) ! ! ( 2 b  + 2j+ 21- 2 ,2b  - 2j+ 21+ k - 3 ) ! !  ( 1 2 )  
for k odd and $ ( k +  1) odd 

S ( k ,  1, b )  = -2(-4)(k.- ') '4[( k +  1)!!]- '(21- k -6 ,  21+ k ) ! ! ! !  

( 9 2 b + ( k + S ) / 2  - 9 2 6 + 2 1 + ( k - 1 ) / 2 )  

(k-1v4 
+ C (-4)'( k - 1 - 4j, k + l)! !( 21 - k - 6,21+ k ) !  ! ! ! 

j = O  

X (21 + k - 4 - 4j, 21 - k - 6 + 4 j ) !  !! ! 

x ( 2 b  + 2j - 1,2b  - 2j + k ) ! !  (26 + 2j + 21 - 2 , 2 b  - 2j + 21 + k - l)!  ! 
( k - S ) / 4  

j = O  
+2  C 
X (21 + k - 4 - 4j, 21 - k - 2 + 4 j ) ! ! ! !  

X (2b+ 2j+ 1 , 2 b  -2j+ k)!!(2b+2j+21-2,2b-2j+ 21+ k - 3)! ! .  

(-4)'( k - 3 -4j, k + 1)!!(21-  k -6,21+ k ) ! ! ! !  

( 1 3 )  
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5.3. Reduction for even k 

When k is even we define 

(I ( k ,  I ,  g )  = (21 - k - 2)(g,  21 - k - 2 + g ) !  !( 21 + g + 1 ,  g - k - 3 ) ! !  

and 
D. 

S (  k ,  I ,  b )  = (- l ) " - b (  2n - 1 , 2 n  + 21 + k + l ) ! ! (  2n + 21 - 2 , 2 n  + k + 2 ) ! !  
n = b  

which, for k > 21, expands by partial fractions to 

S ( k ,  I ,  b )=[(k+21)! !] - '  k'2+1 1 (-1)' ( k / y  ' ) ( 2 l -  3 - 2p, k + 1 - 2 p ) ! ! 9 2 b + 2 p + 1  
p=o 

k / 2 -  1 + 1 k/2-1+1 

+[(k+2-21)! !] - '  q=o ( - lY (  ) 
x (-21-1-2q, k +  1-2q)!!s;2b+k+2-2q* 

Successive use of the identities 

(k ' ;+1)(21-3-2j ,  k + 1 - 2 j ) ! ! =  

k /2+1-1  
j - 1  -( k + 3)( ) ] (21 - 5 - 2j, k + 1 - 2j ) ! !  

( k / 2  - ' )  (21 - 7 - 2j, k - 1 - 2j ) ! !  = ( k + 1 )  [ Y2Y2) 
S (  k,  I ,  j )  + S (  k, I ,  j + 1 )  = ( 2  j - 1,21+ k + 2j + 1 )  ! ! (21 + 2j - 2,  k + 2j + 2 ) !  ! 

k / 2 + 1  
=[(k+21)!!]- '  ( - l )p (  

p=o P 
x (21 - 3 - 2p, k + 1 - 2 p ) ! !  ( 2 j  + 2p + l)- '  

k / 2  - 1 + 1 k / Z - l + l  

+[(k+2-21)! !] - '  q=o 1 ( - l )q(  ) 
x (-21 - 1 - 2q, k + 1 - 2 q ) ! ! (  k + 2+ 2j-  2q)-' 

leads to the ladder operation 

S (  k, I ,  b )  = (k+21)- '[(21-3)(2b-  1,21+ k + 2 b -  l ) ! !  

x (21 + 2b - 4 , 2 b  + k + 2)! !  + ( k + 6 - 21)S( k, 1 - 2,  b + l ) ] .  (15)  

The same ladder operation is obtained by a related method when k < 21. The ladder 
operation relates S ( k ,  I ,  6) for arbitrary 1 to the simpler cases S ( k ,  k / 2 + 2 ,  b -  
$( k / 2 + 2 -  I ) )  when k / 2 -  1 is even and S (  k,  k / 2 +  1 ,  b -$( k / 2 -  1 + 1 ) )  when k / 2 -  1 is 
odd and 1s k / 2 +  1.  These simpler cases may be evaluated from (14)  directly. The 
resulting expressions are inconvenient for computer evaluation because they contain 
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cancelling infinite terms for some values of the arguments. Applying the transformation 
6’-1 

S ( k ,  1, b ) = ( - l ) b - 6 ’ S ( k ,  1, b’)+ Y ( - l ) j - ’ ( 2 j - l , 2 j + 2 1 + k + l ) ! !  
j = b  

x (2 j+ 21 - 2,2 j+ k + 2 ) ! !  

with b’= b + $ ( k / 2 - 1 + 2 )  when k / 2 - 1  is even, and b ’ = b + i ( 3 k / 2 - 1 + 3 )  when 
k / 2  - 1 is odd, overcomes this problem. We obtain: 

( k  even) 

for k even and k / 2  - 1 even 

S ( k ,  1, b)=(- l ) ‘k /2-’+2”2 ( 2 k + 4 ,  k+21)! ! ! !  [ 
X (-2, k -21 +2)!!!!2k’2(0, 2 k + 4 ) ! !  

k + l  

j = O  
9 2 6 + 1  -4 1 ( k + 1 - 2 j ) ! ( 2 b - l , 2 b + 2 k - 2 j + 3 ) ! !  

- 1  + Y (k+21+4j,  k+21)! ! ! !  

x ( k  - 21 - 2 - 4j, k - 21 + 2)!!!!(21+ 1 + 4 j )  

x (2b-2 j+ k / 2 -  I -  1 , 2 b + 3 k / 2 +  l+3+2j) ! !  

x (26 +2j+ k / 2 +  I ,  2 b - 2 j + 3 k / 2 -  1 + 2 ! ! )  

+ ( - 1 ) ’ - ’ ( 2 j - l , 2 l + k + 2 j + l ) ! !  

x (21 + 2j-  2, k + 2j+ 2 ) ! !  

I = (  k / 2 - 1 + 2 ) / 2  

1 
b + ( k / 2 - 1 ) / 2  

i = b  

for k even, k / 2 - 1  odd and 1s k / 2 + 1  

S ( k ,  1, b )  = ( - 1 ) ( 3 “ / 2 - 1 + 3 ) / 2  [ ( 2 k + 2 ,  k+21)! ! ! ! (0 ,  k -21+2)!!!![(  k + 1)!!Iw2 

(-l)(k+2)’ZtF26+2k+4 + 3 ( - l ) k / 2 ( 2  b + 2 k + 3)-’ 

( k - 2 ) / 2  

j = O  
+ $ (- 1)’( k - 1 - 2j, - l)!!( k - 1 - 2j, -l)! ! 

) x (2b+2j+ k +  1 , 2 b +  3k - 2 j + 3 ) ! !  

( k / 2 - f -  1) /2 

1=0 

- ( k  +21+4j, k+21)! ! ! ! (  k -21 -2-4j,  k -21+2)! ! ! !  

x ( 2  1 + 1 + 4 j ) (  2 b - 2 j + 3 k /  2 - 1,2 b + 2 j + 5 k /  2 + 1 + 4 ) !  ! 

X (2b+ 2j+ 3 k / 2 +  1 + 1,2b  - 2j+ 5 k / 2 -  I +  3)!! 1 
6 + ( 3 k / 2 - 1 + 1 ) / 2  + ( - l ) i - 6 ( 2 j - 1 , 2 1 + k + 2 j + 1 ) ! !  

i = b  

x (21 +2j -2 ,  k + 2 j - 2 ) ! ! .  
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The values of S( k,  1, b )  when k / 2  - 1 is odd and 13 k / 2  + 3 are related to those of 
S ( k ,  k/2+3,  b+i ( l -k /2-3) ) ,  which may be established from the l = k / 2 + 1  form 
of equation (15)  directly. This gives 

S (  k ,  1, b )  = h(2 k + 6 ,  k + 21)!!!! ( - 4 ,  k - 21 + 2 ) ! ! ! ! (  2b + 1 - hk - 4 , 2 b  + I + :k  + 2)!! 

+ ( k + 2 1 + 4 j ,  k+21)!!!! 

X ( k  - 21 - 2 - 4j, k - 21 + 2)!!!!(21+ 1 + 4 j )  
j = ( k l 2 - 1 + 3 ) / 2  

X (2b - 2 j  - 3,2b + 21 + 2 j  + k + l ) !  !( 2b + 21 + 2j  - 2 , 2 b  - 2j  + k ) ! ! .  
(18) 

5.4. Further simplification 

Further reduction of the expressions for the X (  k,  1, g )  is possible for particular ranges 
of k and 1. In cases where the original expressions for X( k,  1, g )  (equation (7)) truncate, 
zeros arise in the numerators of the multipliers a ( k ,  1, g )  that cancel with zeros in the 
denominators of some terms in the expressions for S (  k ,  1, b) .  Some of the simplified 
X (  k ,  I ,  g )  expressions are given in Q 7. 

6. Analytic continuation of the X(k ,  I ,  g) expressions 

The procedure described above, resulting in different simplified expressions for 
X (  k, I ,  g )  in the various regions of k,  1, g space, is valid only when k,  1 and g are 
integers. In some (but not all) cases these expressions can be simplified by making 
use of a connection between X( k,  1, g )  and the hypergeometric function. To do so we 
must allow k and 1 to be non-integral. This does not affect the validity of equation 
(3) or, consequently, the definition of X ( k ,  I ,  g) ,  provided factorials are replaced by 
gamma functions, where necessary. 

The restriction of 1 to integral values in the physical solution arises because the 
Legendre functions with non-integral 1 do not belong to the domain of the Hamiltonian 
(Davis er a1 1982). The index j must be integral if 1 is integral (11). 

A restriction on k emerges when the lowest value of k for which non-zero 
coefficients Cijf, occur is considered. Suppose, as is usual when starting the solution 
(II), that the value of p is such that coefficients with larger p are zero. Then the 
functions R (  k ,  I ,  g, p )  and D ( k ,  I ,  p )  in the numerator of equation ( 6 a )  are all zero. 
A zero value for C-,+k ,, leading to the trivial solution, can be avoided only if 
X (  k,  I ,  0) vanishes. Equation ( 2 1 )  shows that this occurs when 

k = 2 1 + 4 n  n = 0 , 1 , 2 , . .  

and so k (and i )  must also be integers. Writing the double factorials in (8) as gamma 
functions and taking the even g case as an example, we obtain 

(21 + g +  1) 
X( k, 1, g )  = - (21 - k - 2 + g) [ g+  ( 2 1 -  k - 2 ) ( - l ) g ’ 2 ( g / 2 ) ! z ( - 1 ) ]  ( g  even) 

(19) 
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where 

F (a ,  b; c; z )  is the hypergeometric function (Abramowitz and Stegun 1965). 
The g = 0 case is especially important as X (  k, I ,  0) appears in the denominator of 

the expression for C - I + 2  f p  (equation (6a)). The vanishing of this denominator causes 
some of the Cij, coefficients to be undetermined by the recurrence relations and the 
derivative continuity conditions. When g = 0, equation (19) reduces to 

X( k, 1,O) = -( 21 + 1)F( 1 - k /  2 - 1,  - k/ 2 - 4; 1 + $; - 1 )  

2k/2-1+1 - (21 + 1) sin[( k - 21) ~ / 4 ] r (  1 + $)r( k/4 - 1/2 + 1) - dl2r( k/4+ 1/2+ 1) 

Equation (21) unifies the expressions obtained by the method of § 5 and is valid for 
non-integral values of k and 1. 

Simplification of (19) when g > 0 is facilitated by the use of Euler's formula (Erdelyi 
1953) 

valid for Re( c )  > Re( b )  > 0. For example, consider the case of k = 2 and g = 4. After 
performing the z integrations in (20), 

The remaining integrals are beta functions (Erdelyi 1953) which may be expressed as 
gamma functions, giving 

8T lI2r( i + $) 
2'( 1 + 1)r ( I /  2 + t)r ( I /  2 + ;) -51-6 ) (120 ) .  (23) X(2,1,4) = - 

Although the restricted validity of Euler's formula requires 1 to be greater than zero 
(22), the expression for X(2,1,4) has a well defined limit 

at 1 =0,  in agreement with (17). Equation (23) unifies the results of (16), (17) and 
(18) and is valid for non-integral I. While such a unification can easily be achieved 
for particular values of k and g, it is difficult to find a simple expression for I ( z )  valid 
for general g. The use of (19) and (20) does not necessarily result in expressions for 
X( k, 1, g )  more convenient than those of § 5. 
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7. An example-the two-electron atom 

7.1. The potential terms 

If particles 1 and 2 in figure 1 are electrons and the massive particle 3 has a positive 
charge Z, then with suitable scaling of the coordinates the potential term in (1) becomes 

where n = 1 if rl  < r2 and n = 2 if rl  > r2. In the recurrence relation (3) we now have 

(25) 
1 I 

m , m - n  voPcllrp = -c+, Irp - Cl/+I r p  +z-' c C C r + m + l j - m  n i - n p a l  
n=- l  m = ( l + n ) / 2  

( n + l  even1 

where 

a m . m - n  = (21+ 1)(1- n -  l ) ! ! ( l+ n -  1)!!(2m+ l-n)!!(2m- 1- n - l)!! 
( I  - n ) ! ! ( l +  n)!!(2m- 1- n)!!(2m+ 1-n+ l)!!  I 

is a Clebsch-Gordan coefficient defined so that 

The third term in (25) represents the electron-electron interaction. For a given k ,  the 
functions R (  k ,  I ,  g, p )  in (6) are completely specified by (3) and (25), provided the 
C,,,, coefficients corresponding to lower values of k are known. 

The coefficients Cijlp with the given k are specified unless both p and X (  k ,  1 ,O)  
vanish (II), in which case C- r+k r lo  is undetermined. An analysis of the coefficients 
with k 2 enables the nature of the undetermined coefficients to be clarified. 

7.2. The Coefficients f o r  k = -1,O, 1 

The lowest value of k consistent with (4) is -1. By the argument of 0 6, non-zero 
coefficients do not occur for k = -1 since X( k ,  1,O) does not vanish for any 13 0. 
When k = 0, X (  k, 1,O) vanishes for 1 = 0 only. The coefficients Coo,, are therefore 
arbitrary, but to be finite the numerator of (6a)  must vanish. This condition requires 
that Cooop = 0 for p 3 1. Coo,, is the only non-zero coefficient for k = 0, and represents 
a factor multiplying the complete solution. We choose its value to be Coo,, = 1. 

For k = 1 the Coooo coefficient propagates to all values of 1 via the electron-electron 
term in the recurrence relation, which contributes an amount Z-'Cooooaf.O = Z-' to 
R(1,  I ,  2,O). The functions R(1,  I ,  g, 0) are zero for g > 2. The required X ( k ,  I ,  g )  
values, obtained from (13), are 

X (  1, I ,  0) = - 2( 2 1 - 1 ) X (  1,0 ,1)  = -1 X ( l ,  I ,  2)=-(21+3).  

With these results the non-zero coefficients for k = 1 are found to be 
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7.3. k = 2  coefficients 

The electron-electron term in (25) simplifies to the extent that only terms with g S 4 
in (6a)  are non-zero when k = 2. For 1 = O  and l = 1 it is easy to show that the 
electron-electron expression sums to zero for g 3 4. This simplification removes all 
terms proportional to 2-* from the electron-electron expression for 1 = 1, leaving only 
2-' terms. The same conclusion applies when l Z 2 .  Here ZW2 terms, the only 
contribution for g 2 4, also sum to zero. In this case the electron-electron expression 
reduces to a sum over ratios of double factorials and can be simplified by the method 
applied to X( k,  1, g )  in 0 5 .  For example, the coefficient multiplying Z-2 for g = 2 is 

( I  -n-3)!!( l+n-  l)!! -4 c 
n=-1 ( I -  n)!!(l+n)!! 

( i + n  even) 

=[(21)!!]-' n=O i (;)(2n-3)!!(21-2n-l)!! 

Continuing in this way, the order of the binomial expansion coefficient can be reduced 
to 1, when the sum is seen to vanish. 

The results of § 5 may be used to show that X(2 ,  I ,  1) = -3(51- 1) and X(2,1,3) = 
-(21+4), valid for 13 0. An expression for X(2,1,4) was derived in 0 6 and the result 

can be derived by the same method. Equations (6) produce the following non-zero 
coefficients for k = 2: 

for 1 2 0  and n 3 O  

-2Z-'(- 1)"(21+1)(21-2)!!!!(21+2n)!!(2n-l)!! 
(21)!!!!(2n+4)!!(21+2n + 5 ) ! ! v  C - I - 2 n - 2  I + 2 n + 4  I O  = 

where v = :T when 1 is odd and v = 1 when 1 is even, 

C2,,, =${2-'[42-'+ 3(Al - 1) +In 2]+3(Al - 1)2- E - 1) 

C1,oo = ( A 2  - l ) [ tZ- '  + ( A ,  - l ) ]  

CO,,, = d{Z-'[fZ-' + A l  -In 2 ] +  3 ( A 2 -  1)2-  E - 1) 

c- 1300 = &Z-'(3A 2 - 2) 

for 1 3 2  
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Z-' [(21- 2)! !! !]2 
C-lI+ZIO =- 21( I + 3) 

21+1 (1+3)A2-1 + 2 - I  
c-I-' I +3  I O  =- 6(1+2) 

The 1 = 1 case is special in that p = 1 terms appear for the first time. X(2,1,0) is zero, 
so the numerator in (6a) must vanish if Cll lo  is to be finite. This fixes the value of 
Cl l l l  to be $Z-'(T-' -4). The other non-zero coefficients for 1 = 1 are 

C0210=$Z-l(1-2A2) C-1310=&Z-l(Al+ 1 - 4 / ~ )  

7.4. Undetermined Coefficients 

Inspection of the 1 = 1 coefficients given above for k = 2 shows that they are just the 
1 + 1 limits of the corresponding 1 2  2 coefficients. It may be asked whether Clllo is 
given correctly by the limit as 1 --* 1 of the 12 2 expression for C-1+2 I I 0. This is not 
so. Whereas the X( k ,  1, g) are continuous functions of 1 at I = 1, the numerator in 
(6a) for p = 0 and k = 2 is not. The discontinuity arises in a term proportional to 
C-1+2,11 in R(2 ,  I ,  2 , O ) .  This coefficient can be written consistently with the value of 
Cl I determined above as 

C-,+2 =[4Z-'( 7 ~ - ~ - + ) / 3  + ( I  - 1)~]611 

where the value of x is arbitrary. all  is the Kronecker delta. Equation (6a) then gives 

C1 l l o =  Z-'[-iA1+ 16/27.rr2 - 8 / 2 7 ~  + ~ Z X ] .  

Thus C1 
equations. 

for p = 0. Thus the coefficients C!+4n 
application of additional restrictions on the solution. 

is not completely determined by the recurrence and derivative continuity 

Undetermined coefficients arise in this way whenever X ( k ,  I ,  0) vanishes in ( 6 a )  
for n 2 0 remain to be determined by the 

7.5. Relation to the Z-'  perturbation expansion 

The two-electron wavefunction generated by this procedure appears naturally as a 
power series in 2 - I .  Thus, for a given state, the Z-" component of the wavefunction 
will be identical to the solution of the nth-order Rayleigh-Schrodinger perturbation 
equation. After setting A I  = A 2  = 1 and performing some minor manipulation, the 2-' 
components of the coefficients derived above are seen to be the same as the coefficients 
in the first-order perturbation solution for the ground state of helium, described in 11. 
Note that the energy term was not shown in the perturbation solution. 

There are two major differences between the perturbation approach and the method 
in this paper. In this treatment all powers of Z-' contributing to a coefficient are 
obtained simultaneously. Secondly, the treatment applies to the wavefunction of any 
state with IS symmetry. State selection is achieved by setting the Z-independent 
components of the energy and arbitrary coefficients equal to their values in the 
independent electron problem, where the electron-electron potential is neglected. The 
use of spherical polar coordinates is particularly helpful in this instance, since the 
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independent electron problem is separable with these coordinates. Its solutions are 
just products of hydrogen atom wavefunctions. 

As an example, the ground state of the two-electron system is selected by choosing 
A , = A z = l  and the Zo component of the energy to be -1. The Z-independent 
components of the other arbitrary coefficients (always confined to 1 = 0 )  should be 
zero. The part of the solution is then represented by a series truncating at k = 0, 
corresponding to the product of 1s  wavefunctions of hydrogen. 

Having selected a state for consideration, the Z-dependent components of the 
energy and arbitrary coefficients are determined by the normalisability requirement 
(see IV). A unique set of values for these parameters will be obtained for each state. 

8. Conclusions 

A systematic procedure has been developed for obtaining and simplifying exact 
expressions for coefficients in formal series solutions for the Schrodinger equation 
describing the spatially symmetric S states of two identical particles in the field of a 
massive third particle. 

Arbitrary coefficients, whose values determine the normalisability of the solution, 
are rigorously identified for solutions expressed in spherical polar coordinates. 

For Coulomb systems, exact expressions for infinitely many coefficients (those with 
k = 0 , l  and 2) are given. The expressions for large values of k are more complicated, 
but preliminary studies, which have reached an advanced stage for k = 3, show that 
they may be simplified by the methods described here. In particular, we note that the 
summand in (6a)  for k = 3 mainly involves ratios of factorials. Sums of this type can 
be simplified by the methods applied successfully to X( k,  1, g)  and to the electron- 
electron potential terms. 

The techniques developed here, used in conjunction with the treatment of the 
normalisability problem as described in IV, will assist in the search for exact solutions 
of the few-particle Schrodinger equation. 
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Appendix. String notation 

Product strings of even or odd factors are denoted in this paper by (a,  b)!!, where a 
and b are both even or both odd integers. Specifically, 

a ( a -2 ) (a -4 ) .  . . ( b + 2 )  i f a > b  
(a, b)!! = 1 i f a = b  

if a < b. r [b(b-2)(b-4) .  . . (a+2)]- '  

For any string we observe that 

(a ,  b)!! =[(b, a)!!]-' 
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while for strings of the same parity (even or odd) 

(a ,  b) ! ! ( c ,  d ) ! !  = ( a ,  d ) ! ! ( c ,  b) ! ! .  

The definition also applies when a and b are non-integral real numbers and a - b is 
an even integer. It can be generalised to describe strings whose successive factors 
differ by an integer other than 2.  For example, if l > O ,  

( k  +21, k - 2 1 ) ! ! ! !  = [ ( k  + 2 1 ) ( k  + 2 1 - 4 ) (  k + 2 1 - 8 )  . . . ( k  - 2 1 + 4 ) ] .  

When manipulating strings of even integers it is often desirable to cancel zeros 
where these occur in both the numerator and denominator of an expression. This 
procedure is justified by regarding the expression as a limit of ratios of non-integral 
strings. 

Care is required when extracting a common factor from the factors in a string. Thus 

( -6  - x ) (  -4 - ~ ) ( - 2  - x)( - ~ ) ( 2  - X )  
(6, - 4 ) ! ! ( - 4 , 2 ) ! !  =lim ( - 1 ) 5  

x-0 ( 2  + x ) (  x)( -2  + x )  

= ( - 1 ) 4 ( 2 ,  - 8 ) ! ! ( - 4 , 2 ) ! !  

so that 

(6, - 4 ) ! !  = ( - 1 ) 4 ( 2 ,  -8)!!. 

By examining cases of this type we arrive at the following ad hoc rule for extracting 
a common factor from a string containing z e r o - d o  not extract the c m o n  factor 
from zero. 

Factorials of integers, including negative integers, may be defined in terms of the 
string notation. For example, if n is an integer 

n ! = ( n , O ) !  ( 2 n ) ! !  = (2n,  O ) ! !  ( 2 n  + l ) ! !  = ( 2 n  + 1 ,  - l ) ! !  

( 4 n ) ! ! ! !  = ( 4 4  O ) ! ! ! !  

fractions. For example, if s 3 0, 

( n  - 2 ,  n + 2 s ) ! !  = ( 2 s ) - ' [ ( n ,  n +2s)!! - ( n  - 2 ,  n + 2 s - 2 ) ! ! ]  

( 4 n + 2 ) ! ! ! !  = ( 4 n + 2 ,  - 2 ) ! ! ! ! .  

Products of strings in the denominator of an expression may be expanded by partial 

= ( 2 ~ ) - ' ( 2 ~ - 2 ) - ' [ ( n  + 2 ,  n + 2 s ) ! !  

-2(n ,  n + 2 s - 2 ) ! !  + ( n  - 2 ,  n + 2 s - 4 ) ! ! ]  
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